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A high-resolution, quasi-geostrophic numerical model is utilized to examine two- 
layer baroclinic flow in a cylinder. Particular attention is given to the role of 
horizontal shear of the basic state induced by viscosity near the cylinder wall, and to 
the desymmetrization brought about by the cylindrical geometry, in the transition to 
baroclinic chaos. Solutions are computed for both f-plane and P-plane situations, and 
the results are compared to previous laboratory experiments. Agreement in the former 
case is found to be good, although the onset of chaos occurs at slightly lower forcing 
in the laboratory when its basic flow is prograde, and at higher forcing amplitude 
when the experimental basic azimuthal currents are retrograde. This suggests that the 
modest discrepancies may be attributable to computationally neglected ageostrophic 
effects in the interior fluid and Ekman boundary layers. When /? # 0, the numerical 
and laboratory results are in excellent agreement. The computational simulations 
indicate that the viscous sidewall boundary layer plays a pivotal role in the dynamics. 
Moreover, in contrast to previous studies performed in a periodic, rectilinear channel, 
the route to chaos is largely temporal and involves relatively few spatial modes. The 
reduction in symmetries upon going from f-plane channel to either f-plane or P-plane 
cylinder models leads to fewer secondary instabilities and fewer spatial modes that 
are active in the dynamics. 

1. Introduction 
In a series of studies, we have tried to discover the physical processes responsible 

for the transition to chaos observed in laboratory experiments on finite-amplitude 
baroclinic instability. The experiments on two-layer flows on the f-plane (Hart 1972, 
1985) and /?-plane (Ohlsen & Hart 1989a,b) exhibit a panoply of dynamical behaviour, 
including steady flow, various types of periodic vacillations and chaos. Moreover, 
the onset of aperiodic flow occurs when the system is only moderately unstable 
( A  NN 1) to wavelike disturbances, indicating that chaos is quite easy to induce. The 
supercriticality A is here defined as A = ( F  - Fc)/Fc, where F is the rotational Froude 
number and F, is the critical value of F needed for instability. 

Comparisons of low- or moderate-order models (e.g. those of Pedlosky & Frenzen 
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1980; Hart 1986; Yoshida & Hart 1986; Ohlsen & Hart 1989b) with laboratory ex- 
periments have met with only modest success. For example, the onset of periodic and 
chaotic behaviour in the models generally does not coincide with that observed in the 
laboratory. There are two factors that apparently contribute to the discrepancy be- 
tween model and experimental results. First, in some of the models a zonally periodic 
channel geometry is used. The experiments, however, are conducted in a cylinder. Sec- 
ond, all of the low-order models ignore the viscous effects near the no-slip sidewall(s), 
preferring instead to neglect lateral friction altogether for simplicity of analysis. 

Recently, efforts have been made to construct high-resolution models of two-layer, 
quasi-geostrophic flow which presumably exhibit more realistic behaviour at larger 
supercriticality. Klein & Pedlosky (1986), Cattaneo & Hart (1990), and Mundt and 
Hart (1994) considered high-resolution models in a free-slip channel geometry with 
up to 128 x 65 modes in each layer. While exhibiting complex spatio-temporal 
motions, the numerical findings were nonetheless still disappointing when compared 
to experimental results. While the onset of chaos in the laboratory occurs at about 
unit supercriticality, in these numerical models it is deferred to A = 4. In an attempt to 
rectify this major discrepancy, Mundt, Brummell & Hart (1995) considered an f-plane 
channel with rigid (no-slip) sidewalls. The results were quite surprising. For thicker 
sidewall boundary layers (and relatively small Ekman suction), chaotic behaviour 
was observed to occur at or below the linear neutral curve as a result of subcritical 
bifurcations. For thinner sidewall layers, chaos arose through a supercritical quasi- 
periodic bifurcation when A = 1. The inviscid interaction of the baroclinic waves with 
the horizontal shear induced by viscosity near the sidewalls is destabilizing, and it can 
completely overcome the stabilizing influence of interfacial friction, which previously 
had expunged the strange attractors in the free-slip simulations. 

Although the inclusion of rigid sidewalls brings the critical point for transition to 
chaos into qualitative agreement with experimental results, quantitative correspon- 
dence is still lacking. For instance, both f-plane and P-plane laboratory experiments 
exhibit period-doubling routes to chaos. In addition, there are complex periodic 
states on the p-plane, such as nonlinear interference vacillation (Ohlsen & Hart 
1989b), which depend on the forcing direction in the experiments, but not in inter- 
mediate models. In both the free-slip and no-slip channel models, it has been noted 
that symmetry breaking plays a prominent role in the transition to chaos (Mundt 
& Hart 1994; Mundt et al. 1995). Temporal bifurcations (e.g. steady to periodic, 
periodic to quasi-periodic) are accompanied by a breaking of one or more spatial 
symmetries, which are described in $2. Since these particular symmetries do not exist 
in the cylinder, we hypothesize that they influence the type of transition sequence one 
obtains, as well as the dimension of the resulting chaos. 

In order to examine the effects of a realistic geometry coupled with a viscous 
sidewall, we have formulated a high-resolution model of two-layer flow in a rigid-wall 
cylinder. We consider both f-plane and P-plane motions, to provide a comprehensive 
comparison with laboratory results. One objective is to ascertain the degree to 
which the observed experimental behaviour, which occurs at small to moderate 
Rossby numbers, can be described by the quasi-geostrophic equations. Another is to 
determine the role of geometrical symmetries and spontaneous symmetry breaking in 
the transition to chaos. 

The paper is organized as follows. Section 2 introduces the governing equations, lists 
the important parameters, and describes the important symmetries of the systems. 
The basic-state solution for a rigid cylinder is derived in $3. In $4 we present 
linear stability diagrams, and the results are compared with experiment and previous 
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stability calculations. In 95 the numerical method is outlined, and then results for 
both f-plane and P-plane geometries are presented. The behaviour is compared to 
the experimental findings, and we attempt to provide a physical explanation for the 
observed results. Empirical orthogonal function (EOF) analysis is utilized in 96 to 
diagnose the spatio-temporal complexity of the solutions and to examine the role of 
symmetry breaking in the transition to chaos. In $7 we present our conclusions. 

2. Governing equations 
The fluid is contained in a cylinder of radius L that rotates with an angular 

frequency Q. The wall at r = L is rigid (i.e. the velocity of the fluid is zero at the 
wall). The flow itself consists of two immiscible fluids, with densities pi and viscosities 
vi, i = 1,2. The volumes of the two layers are equal, the equilibrium depth is denoted 
by H ,  and the upper lid rotates at a differential frequency o. The configuration is 
shown schematically in figure 1. 

In order to simulate the f-plane, the curvature of the top lid and bottom tank 
surface is made equal to that of the interface between the two fluids when the basic 
rotation Q is present (Hart 1985). Similarly, a polar p-plane can be obtained by using 
a flat bottom and a top lid whose curvature is twice that of the interface parabola 
due to Q (Hart 1972; Ohlsen & Hart 1989a). Vortex columns then get stretched with 
increasing radial position in both layers, forming a topographic p-effect. 

When the relative vorticity, measured by o, is small compared to the planetary 
vorticity 2Q, the flow may be described by the quasi-geostrophic approximation. We 
non-dimensionalize using L as a length scale, 0 - l  as a time scale, and Lo as a velocity 
scale. For equal layer depths and a non-dimensional upper lid driving (COT) equal to 
the sign of o (or the sign of Q, see below), the governing potential-vorticity equations 
for the two layers are (Hart 1972) 

[ -k J(pi, )] [v2pi + F(P2 - pi)] = -IQI(V2Pi - 2 0 ~ )  

P m ELI 

1 + x  p o l  a0 (Rol 
+ -v4p1, x +IQI-(V2P2 - V2P1) - -- 
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In cylindrical coordinates, the Jacobian J is defined as 

and 

The parameter F is the rotational Froude number, 

Ro is the Rossby number, 
0 

RO = - 2 0  ' 
x is the viscosity ratio, 

EL, and  EL^ are the lateral Ekman numbers, 

E,  is the vertical Ekman number, 
V 1  

2QH2' 
E,  = - 

Q is the Ekman layer friction parameter, 

(v1Q)'I2 Ed" Q=-- -- 
Ho ~ R O '  

and P is the 'planetary vorticity gradient' caused by topographic stretching, 

P = (A4/H, 

(2.10) 

(2.11) 

where Ad is the total height variation of the lid parabola. 
In the laboratory, the parameters are generally fixed by the geometry and the 

properties of the fluids in the two layers. The Froude number is changed by altering 
the density of the fluid in one of the layers. Experiments are usually carried out by 
fixing F and changing o to alter Q. We mimic this procedure in most of the numerical 
runs for easier comparisons to laboratory results. 

The velocities in the two layers are evaluated geostrophically and are given by 

(2.12) 

where k denotes the layer and uk and vk are the radial and azimuthal velocities in 
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the kth layer, respectively. Pk is thus the streamfunction in each layer. In later 
sections we also use a barotropic/baroclinic streamfunction notation. The barotropic, 
or depth-averaged, streamfunction can be defined by 

Pbt P1 + p2, (2.13) 

while the baroclinic, or depth-varying, component is 
p b c  p2 - PI, (2.14) 

and the governing equations can be re-written in terms of the variables Pbt and pbc  by 
taking the sum and difference of (2.1), (2.2) (see Mundt & Hart 1994). The deviation 
h of the interface (from its parabolic equilibrium shape) is given by 

h = RoFPb,. (2.15) 
At the rigid cylinder wall (Y = 1) we require that 

(2.16) 
(2.17) 

We also demand regular solutions at the origin. 
Since the zonally averaged flow (a function of r only) trivially satisfies u1 = u2 = 0 

everywhere, an extra boundary condition is needed for this quantity. By integrating 
(2.1), (2.2) over the domain and demanding that the mass of the fluid in each layer 
be conserved, i.e. 

we obtain another boundary condition on the zonal flow: 

$ I r E l  =o, 

(2.18) 

(2.19) 

(2.20) 

where ok = V2Pk is the vorticity in the kth layer and an overbar denotes a zonally 
averaged quantity. 

The parameters were chosen to emulate the laboratory experiments of Hart (1985) 
and Ohlsen & Hart (1989a,b). In table 1 we list, for reference, the important 
dimensional and non-dimensional parameter values. 

Owing to both geometry and parameter constraints, the traditional f-plane rec- 
tilinear channel model possesses several symmetries not present in the laboratory 
cylinder (Mundt & Hart 1994). The first symmetry, in which the basic system is 
recovered after exchanging the layers and changing the zonal direction (x + -x), 
is termed flip-reverse. It occurs when x = 1, @ = 0, and the basic-state velocities 
in the two layers are equal and opposite. In the cylindrical laboratory experiments 
that are forced from the top only, none of these conditions is satisfied, particularly 
that of equal and opposite basic flow, and the symmetry is strongly broken. Another 
symmetry in channel models arises from the geometry alone. Since the northern 
and southern halves of the channel are equivalent, there is a possible shift-reflect 
symmetry in the solutions. In this situation, the velocity at ( x , y )  is identical to the 
velocity at (x + 2 / 2 , 1  - y ) ,  where 9 is the periodicity length of the channel and the 
width y E [0,1]. Defining the gravest zonal (k , )  and meridional ( k , )  wavenumbers to 
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Parameter f -plane P-plane 

P2 
F 
Q 

13.0 
22.80 
2.856 
0.01 58 
0.0128 
0.851 
0.90 
0 
5.324 x 
4.490 x 

varies 
varies 
varies 
varies 

13.0 
22.54 
3.465 
0.0158 
0.0143 
0.851 
0.95 
0.4792 
4.314 x 
4.053 x 

varies 
varies 
varies 
varies 

TABLE 1. Summary of dimensional and non-dimensional parameter values used in f-plane and 
p-plane geometries. 

be 1, all waves in this symmetric state have the property that k ,  + k, is even, and the 
wavenumber set is invariant under the nonlinear operators (Cattaneo & Hart 1990). 
In the cylinder, however, the curvilinear coordinates destroy this symmetry. The 
absence of both flip-reverse and shift-reflect symmetries in the cylindrical geometry, 
it will be shown, has a profound effect on the observed dynamics. 

3. Basic state 
An exact, azimuthally invariant, steady solution of (2.1),(2.2) is 

where the overbar again denotes an azimuthally invariant solution. The quantities 
ill, 4, c1, c2, y1 ,  and y 2  are given by algebraic relations involving x, Q, EL,/Ro,  and 
EL2/Ro and are listed in the Appendix. In the above equations, II is a modified Bessel 
function of the first kind. The constants A1 and A2 are proportional to [ Q / ( E L ~  /Ro)] 1 / 2 ,  

yielding a boundary layer with an e-folding thickness of order EL? (Stewartson 1957). 
The velocity profiles for the two layers given typical laboratory parameters of Q = 0.1, 
x = 0.9, and EL1 = 5.324 x lop6 (which yield A1 = 33.8, A2 = 23.7) are shown in figure 
2. The interior of the flow is in solid-body rotation, while the outer wall gives rise to 
a viscous shear layer near r = 1. In contrast to the  EL^ = ELz = 0 solution, which 
is simply the first term on the right-hand sides of (3.1) and (3.2), the presence of the 
sidewall boundary layer yields large basic-state vorticities and vorticity gradients in 
the outer 10% of the domain. 

4. Linear theory 
Calculations of the onset of linear instability of single-wave disturbances in a rigid- 

wall, f-plane channel have been made by Mundt et al. (1995). They noted significant 
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FIGURE 2. Basic-state velocity profiles for Q = 0.1, x = 0.9, and El = 5.324 x 
The solid and dashed lines correspond to the upper and lower layers, respectively. 
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FIGURE 3. Stability curves for f-plane geometry, x = 0.9. The solid lines show the rigid-wall 
results, while the dashed lines show the ELi = 0 calculations. The circles and squares denote 
the onset of instability of a k = 1 wavy disturbance in laboratory experiments for co-rotating and 
counter-rotating driving, respectively. The numbers in parentheses give the wavenumber components 
of the corresponding EL,. = 0 calculations. 

differences when compared to results obtained using free-slip sidewalls. In particular, 
for a given value of Q, the critical value of F needed for instability, denoted as F,, 
is a strong function of L1 and ;/2. As decrease (i.e. the shear layer widens), F, 
becomes larger than the free-slip value for Q >> 1 but smaller for Q << 1. Large 
values of 21,2 with a correspondingly narrow boundary layer yield results similar to 
the free-slip solutions for all values of Q. 

Stability curves were calculated for the rigid-sidewall cylinder by first linearizing 
(2.1),(2.2). The approach is similar to that described by Mundt et al. (1995), except 
that a finite-difference technique is used in this study instead of an eigenfunction 
expansion. Neutral curves are presented for the two sets of parameters listed in table 
1. The f-plane rigid-wall neutral curves are shown in figure 3 by the solid lines, 
while the dashed lines show the neutral curves obtained analytically by neglecting 
lateral friction and requiring only that the wave normal velocity vanish at r = 1 
(e.g. Hart 1972). The numbers in parentheses give the zonal and radial wavenumber 
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FIGURE 4. Stability curves for b-plane geometry, x = 0.95, fi  = 0.4792. The circles, squares, and 
triangles indicate the onset of k = 1, k = 2, and k = 3 disturbances, respectively, in the laboratory 
experiments. (a) Co-rotating case (Q > 0), (b )  counter-rotating case ( Q  < 0). 
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FIGURE 5 .  A snapshot of the upper-layer (a) streamfunction and (b )  vorticity eigenfunctions for 
fl  = 0, Q = 0.05, F = 9.13, x = 0.9, and k = 1. The solid and dashed lines respectively show the real 
and imaginary parts of the eigenfunctions. The dotted line shows the  EL^ = 0 solution, proportional 
to Jl(3.832r). 

components, respectively, used in the EL, = 0 calculations. In the quasi-geostrophic 
approximation with /? = 0, the behaviour of the flow is independent of the sign of 
the lid driving; hence the neutral curves depend only on IQI. In the figure, the circles 
indicate the onset of instability, in this case composed of k = 1 disturbances, in 
the laboratory experiments (Hart 1985). The experimental results exhibit significant 
differences between co-rotating and counter-rotating lid driving. More specifically, the 
co-rotating results are less stable than predicted by linear theory, while the counter- 
rotating case is somewhat more stable. This implies that ageostrophic effects are 
important even when Ro is relatively small, although in the important lateral shear 
layer near r = 1 the local Rossby number is magnified. Note the favourable agreement 
with the EL, = 0 neutral curves for positive Q. This, in part, led to the use of models 
without effects of lateral friction in studying nonlinear baroclinic flows. 

The /?-plane results for co-rotating lid driving (Q > 0) are displayed in figure 4(a), 
while figure 4(b) shows the results for a counter-rotating lid (Q < 0). Also shown in 
the figure are the locations of the initial onset of waves, along with the dominant 
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wavenumber, obtained from the laboratory experiment (Ohlsen & Hart 1989b). The 
co-rotating case shows substantial differences between neutral curves calculated with 
EL, = 0 and those obtained with lateral viscosity. The agreement between the 
experimental results and the rigid-wall predictions are quite good. At F k: 16.5, for 
instance, the experiment shows that k = 1 becomes unstable first; the rigid-wall results 
confirm this. The EL, = 0 calculations, however, indicate that the instability should 
be dominated by k = 2. For the counter-rotating case, the results are less sensitive 
to the sidewall boundary condition. The two sets of curves are nearly commensurate 
and in fact overlap for some ranges of Q. The k = 1 disturbance with the rigid-wall 
condition undergoes a transition to a higher radial mode at Q k: -0.05, as in the 
lateral friction-free theory. For Q < 0, the minor discrepancies between experiment 
and prediction (at F k: 19.2, for example, where the linear results predict k = 2 should 
become unstable first instead of the observed k = 1) are presumably attributable to 
higher-order ageostrophic effects. 

The linear eigenfunctions are somewhat different from those in the EL, = 0 case. 
In the latter, the solutions are simply ordinary Bessel functions of the first kind in 
r (Jk for a given zonal wavenumber k) .  Figure 5 shows a snapshot of the real and 
imaginary parts (shown by solid and dashed lines, respectively) of the upper-layer 
streamfunction and vorticity on the f-plane for the full viscosity case just inside the 
stability boundary at F = 9.13. The real part of the streamfunction passes through 
zero in the interior. In addition, the vorticity at the walls is quite large, underscoring 
the effect of horizontal shear of the basic state induced by the no-slip condition at 
the sidewall. For comparison, the Bessel-function solution Jl(ar) ,  a k: 3.832, scaled 
by an arbitary but similar amplitude, is shown by the dotted line. The vorticity is 
-a2 times the streamfunction solution and is very much smaller than that for the 
rigid-wall eigenfunctions near r = 1 given a comparable interior amplitude. 

5. Nonlinear model 
5.1. Model formulation 

The model was formulated with a mixed pseudo-spectral/finite-difference method. A 
Fourier expansion was used in the azimuthal direction owing to the periodicity. In 
the radial direction we used finite differencing. In addition, because we anticipate 
much of the interesting dynamics to occur in the boundary layer near r = 1, and 
since typically the region near the origin is relatively quiescent, a stretched grid was 
introduced. Defining a uniform grid variable q E [0,1], 

i - 1  
n, - 1 q = -  , i = l ,nr ,  

where n, is the number of grid points used in the radial direction, the stretched grid 
variable p (which is the actual radial position of the ith grid point) is defined as 

so that p E [0,1] as well. The constant a was chosen to be 2 for this study; this value 
provided an adequate density of points in the boundary layer (approximately 8 in an 
e-folding thickness for n, = 65) while still resolving the interior flow. 

We used a semi-implicit method in time: the linear terms were updated with a 
Crank-Nicholson scheme, while the nonlinear portions were marched forward with a 
three-level Adams-Bashforth method. The nonlinear terms were calculated by Fourier 
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transforming in 0 and finite-differencing in r .  In the azimuthal direction, a standard 
dealiasing scheme based on the 213 rule was used (Canuto et al. 1988). 

For the zonally averaged portions of the flow, (2.17),(2.19),(2.20) were enforced 
explicitly. For the wavy parts, (2.16) was enforced by setting the wavy streamfunctions 
to 0 at r = 1. Equation (2.17) was satisfied implicitly by setting o k  = V2Pk at the 
sidewall, but assuming that aPk/dr  = 0 when deriving the Taylor series approximation 
to the vorticity in terms of the streamfunction (Anderson, Tannehill & Pletcher 1984). 
This approach, while not completely rigorous in satisfying (2.17) (Quartapelle & 
Valz-Gris, 1981), seems to yield quite satisfactory results in the sense that a posteriori 
checks indicate that o k  = d&/& is very nearly zero at the sidewall. 

All results described in this paper were obtained with a resolution of 64 x 65 in 
the azimuthal and radial directions, respectively. Numerical runs at a resolution of 
32 x 33 were also performed; these generally showed no substantial differences when 
compared to the more highly resolved computations. In a few limited cases (i.e. 
small values of IQI), there were minor qualitative behavioural discrepancies. These 
appear to be attributable to a marginally resolved sidewall boundary layer in the 
low-resolution runs. Finally, an a posteriori check of the 64 x 65 results showed the 
energy possessed by the higher-wavenumber modes to be negligible. 

5.2. f -plane results 
The experimental results, obtained from Hart (1989, are displayed in figure 6 (note 
that in his figure 3, the abscissa needs to be multiplied by 8 to correspond to our 
definition). The rigid-wall neutral curves calculated in $4 have been superimposed. 
The figure shows results for both co-rotating and counter-rotating lid driving. Over 
the range of F and Q shown, the k = 1 wave is always the most linearly unstable. 
For Q > 0, the flow equilibrated to a steady wave state for values of Q somewhat 
inside the stability threshold. At smaller values of F,  this steady state persisted 
until the flow was no longer quasi-geostrophic (Q << 1 and thus Ro - 1) and 
underwent a Kelvin-Helmholtz type of instability at the interface near the sidewall. 
For F 2 11, however, there were transitions, as Q was decreased at constant F,  to 
periodic amplitude vacillation and eventually to chaos. We define a chaotic signal as 
one which is aperiodic and displays a broadband Fourier spectrum. We will use the 
term ‘noisy periodicity’ to indicate a signal that appears nearly periodic but whose 
amplitude is modulated slightly with a chaotic component (Lorenz 1980), yielding a 
Fourier spectrum with sharp peaks but a relatively high ‘noise’ level. The route to 
chaos was observed to be via period-doubling, though some drifting of the period- 
doubled signals was observed in the experiment. In addition, the highest periodic 
solution observed before the onset of chaotic behaviour was a period-4 oscillation. It 
is unknown ( a )  whether the drifting was due to a quasi-periodic phenomenon or to 
experimental noise, and ( b )  whether the period-doubling cascade was incomplete or 
complete but unobservable experimentally. 

The laboratory results for o < 0 (counter-rotating) showed interesting differences 
when compared to the o > 0 (co-rotating) case. For Q < 0, the axisymmetric basic 
state was significantly more stable than the Q > 0 case. For small negative values of 
Q, a steady travelling-wave solution was reached, but no time-dependent behaviour 
was observed in the parameter range studied. From figure 7, it is evident that 
differences exist for IQI values as large as 0.1, which corresponds to Ro = 0.03. The 
quasi-geostrophic f-plane model is invariant to changes in the sign of o~ (or Q). The 
flow structure remains the same, only the direction changes. Thus, quasi-geostrophic 
models cannot capture the asymmetries in figure 7. Following the linear results, we 



Symmetry, sidewalls, and baroclinic chaos 

18 

10 

321 

i - - 

- - 

14yA ~ s 1  C , P ,  S1 ,A< 

F - A  s1 c , P ,  s1 A: 

: A  , Sl - c ,  P ,  s1 , A  : 
1 7 

A K, S I , A  
- - 

1 

18 

F :  

10 

6 :  

6 
, , , ! ,  , , , , , , , , , , , , , ,; 

, " ' I " ' , ' " , " ' , ' ' " ' ' ' /  

- - 

- - 
C ,  P s1 

- ~ _ _ _  14:cp21 I s1 

- 

SI - - 

- - 

- 
I , . , ,  , , . I  , , . I ,  , , , , , , I I I ,  I 

-0.15 -0.10 -0.05 0 0.05 0.10 0.15 

Q 
FIGURE 6. Experimental results on the f-plane. The dotted lines show the rigid-wall neutral curves 
for k = 1,2,3. A = axisymmetric basic-state solution, S1 = steady waves dominated by k = 1, 
P = periodic amplitude vacillation, C = chaos, K = Kelvin-Helmholtz instability (data from Hart 
1985). 

expect the dynamics of the quasi-geostrophic computations to be more complex than 
the results seen for Q < 0 and less complex than those found for Q > 0. 

The numerical model was integrated over the experimental range of Q, and for 
Froude numbers F = 10, 13.7 and 15. The results are displayed in figure 7. We 
will refer to a mode composed of azimuthal wavenumber k and radial wavenumber 
m as mode (k ,m) .  In agreement with experiment, at F = 10 the model exhibits a 
steady solution dominated by a wave with azimuthal and radial wavenumbers of 1 
(i.e. mode (1,l)) over the entire range of Q studied. At F = 13.7, the solution is 
steady and primarily composed of the wave (1,l) when Q > 0.04. At Q = 0.04, the 
flow enters a regime of periodic amplitude vacillation (PAV) ; spatially, however, most 
of the energy still remains in the (1,l) mode. For Q = 0.03, PAV also exists, but the 
vacillation is somewhat different than that observed at Q = 0.04 (e.g. smaller wave 
amplitude, less variability in energy transfers). As Q is decreased to 0.015, the PAV 
solution bifurcates to a period-2 vacillation. The contribution of the (2,l) wave to 
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FIGURE 8. Time traces of baroclinic axis signal for F = 13.7. (a)  Q = 0.0175 (PAV), 
( b )  Q = 0.015 (period-2), (c) Q = 0.012 (modulated period-2). 

the flow simultaneously becomes more visible, and throughout portions of the cycle, 
the (1,l) and (2,l) components possess roughly the same energy. When Q is further 
decreased to Q = 0.012, a low-frequency, small-amplitude signal begins to modulate 
the period-2 solution. This oscillation nearly phase locks at a frequency 1/8 that of 
the predominant PAV period, causing the solution to look very much like a noisy 
period-8 vacillation. As Q is decreased to 0.011, the solution suddenly turns to PAV 
again, with both the period-doubling and the quasi-periodic modulation disappearing 
simultaneously. Finally, for Q = 0.01, the solution is chaotic. Figure 8 shows the 
baroclinic axis signal, i.e. Pbe at r = 0, for the PAV, period-2, and modulated period-2 
(approximate period-8) regimes. At the axis, the contribution to the signal comes 
only from the zonal flow since the waves have zero amplitude at the origin, effectively 
filtering out the high-frequency travelling-wave signal. In this and all subsequent 
figures, the time scale is non-dimensional, so that the lid rotates in 2n time units. 

The behaviour at F = 13.7 is consistent with the experimental observations in 
that there is a partial period-doubling cascade that appears to be somewhat ‘noisy’. 
However, for small Q the numerical solution possesses narrow periodic windows 
while the experiment shows chaos. Moreover, the transitions to periodic and chaotic 
flow in the experiment occur at slightly larger values of Q than in the numerical 
results. Nonetheless, the qualitative agreement with experiment in the periodic regime 
is quite good, as both the numerical and laboratory PAV solutions oscillate with a 
period of approximately 12 lid periods, and the laboratory flow is also dominated 
by the wavenumber-1 component. Therefore, while the basic vacillation mechanism 
appears to be the same (corroborated by the excellent agreement in PAV periods), 
ageostrophic effects in the co-rotating laboratory experiments seem to destabilize the 
flow and hasten the transition to chaos. 

For F = 15, the computed transition sequence is somewhat different than that 
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FIGURE 9. Time traces of baroclinic axis signal for F = 15. (a) Q = 0.03 (PAV), ( b )  Q = 0.0225 
(noisy period-2), (c) Q = 0.020 (noisy period-4), ( d )  Q = 0.0175 (chaos). 

observed at F = 13.7. Steady flow exists for Q 2 0.06, and the system exhibits 
PAV in the region 0.0225 < Q < 0.06. At Q = 0.0225, there is a long period of 
transient behaviour in which the system appears to reach a stable period-2 solution, 
but it eventually approaches an asymptotic state dominated by a period twice that 
in the PAV regime. In addition, the period-'doubled' signal appears to be modulated 
quasi-periodically with a period about 3 times the 'doubled' period (or 6 times the 
original PAV period), yielding a noisy period-2 solution. As Q is made smaller, the 
noisy period-2 solution bifurcates to a noisy period4 signal, and further decreases 
in Q drive the system to a fully chaotic state. All of the solutions are dominated by 
the (1,l) wave with a small contribution from the (2,l) mode. Figure 9 shows the 
baroclinic axis signal in the periodic, noisy period-2, noisy period-4, and fully chaotic 
regimes. We note that the dominant period of the periodic solution at Q = 0.03 is 
half that of the other time series. The noisy period-doubling cascade is also consistent 
with the experimental results obtained at F = 13.7, but the main discrepancy is that 
the laboratory signal maintains the original PAV period as its primary vacillation 
period (instead of the doubled period). 

5.3. P-plane results 
In /?-plane laboratory experiments, Ohlsen & Hart (1989a,b) found a rich spectrum 
of dynamical behaviour. Figure 10 summarizes the laboratory results for both co- 
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rotating and counter-rotating lid driving. Consistent with previous findings (Hart 
1981; Pedlosky 1981), a general tendency for the dominant zonal wavenumber k 
to decrease with decreasing IQI (at constant F )  was observed. Although in f-plane 
weakly nonlinear theory, Hart (1981) showed that only one wave can stabilize to 
finite amplitude, Mansbridge (1984) showed that on the P-plane a mixed-wave state 
is possible if P is large enough. For both co- and counter-rotating forcing, the 
experiments met the P criterion and mixed-wave states between wavenumber pairs 
1,2 and 2,3 were observed. 

In the co-rotating case (Q > 0), the transition sequence, as Q was decreased from the 
linear critical value, was largely the same for 15 < F < 30. For a fixed value of F,  the 
axisymmetric state yielded to a steady-wave solution just inside the neutral curve. For 
slightly smaller Q values, a travelling but phase-locked steady-wave state involving 
wavenumbers k = 1 and k = 2 occurred. As Q was decreased further, periodic 
amplitude vacillation appeared. This solution period doubled and eventually became 
chaotic as the lid driving was intensified. Finally, although the solutions for Q > 0 
generally exhibited phase-locked waves, there also existed a region for F 2 30 where 
nonlinear interference vacillation (NIV) was observed between wavenumbers 2 and 3. 
NIV (Ohlsen & Hart 1989b) is a phenomenon whereby two steady-amplitude waves 
travelling at slightly different speeds generate a time-periodic zonal flow correction 
via higher-order sideband interactions rather than through their direct interaction, 
which does not project onto the zonally averaged field. 

The observed behaviour in the counter-rotating case was quite different than its 
co-rotating counterpart. Just inside the linear neutral curves, steady travelling-wave 
solutions with varying wavenumbers (depending on F )  were observed. The most 
striking feature for Q < 0 was the large window of NIV observed for F 2 20 and 
moderate values of Q. Depending on F ,  the NIV involved wavenumbers 1 and 2 or 2 
and 3. As the lid driving was increased (i.e. IQI decreased), the interference vacillation 
yielded to a PAV solution, though for lower F the two were separated by a window 
of steady waves. The PAV solution was eventually supplanted by a noisy periodic 
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FIGURE 11. Numerical results on the P-plane. The dotted lines show the rigid-wall neutral curves for 
k = 1,2,3. Sn = steady waves with azimuthal wavenumber n, P = periodic amplitude vacillation, 
P* = periodic amplitude vacillation or period-doubled PAV, NP = noisy periodicity, C = chaos, 
Inl, n2 = nonlinear interference vacillation with azimuthal wavenumbers nl and n2, L = locked wave 
state between k = 1 and k = 2. The I/P notation at F = 35 indicates a small region where there 
exists either NIV or a phase-locked mixing of NIV and PAV in small windows. 

solution and finally fully chaotic flow. For F > 30, a small window of wavenumber 
vacillation was also observed near Q = -0.04. 

The numerical model was run at several values of F for both Q > 0 and 
Q < 0. Requirements on computational time prevented us from exploring the 
entire parameter space. Instead, values of F likely to yield the most representative 
behaviour were chosen, and the transition at these Froude numbers was explored in 
detail. The numerical results are summarized in figure 11. 

For the co-rotating case at F = 15, the k = 1 wave is the most linearly unstable, 
and this is reflected in the dynamics. Just inside the neutral curve at Q = 0.03, a 
steady travelling-wave solution dominated by mode (1,l) exists. When Q is decreased 
to 0.017, the flow begins to exhibit PAV, but spatially the solution is still composed 
largely of the k = 1 component. This simple spatial dependence persists in the chaotic 
regime, which occurs abruptly (though with no observation of hysteresis) when Q is 
decreased below 0.012. The numerical solutions cannot be directly compared with 
experimental results since no laboratory data were taken for F < 16.7. However, no 
evidence of period doubling was found in the numerical model, which is observed in 
the laboratory data for somewhat larger values of F.  

The solution at F = 23 is composed of a steady travelling wave with wavenumber 2 
just inside the neutral curve. As Q is decreased to 0.043, the k = 1 wave grows to finite 
amplitude and a steady, mixed-wave state with k = 1 and k = 2 ensues. At Q = 0.039, 
this steady, phase-locked solution makes a transition to periodic amplitude vacillation. 
This solution period doubles and becomes fully chaotic for Q < 0.033. Time traces of 
the baroclinic axis signal are shown in figure 12 for the period-1, period-2, period-4, 
and chaotic solutions. In the periodic regime, the dominant PAV period is nearly the 
same (to within 5%) as that obtained from the laboratory experiment at comparable 
parameter values (cf. figure 15 of Ohlsen & Hart 1989b). The time series at Q = 0.029 
appears more chaotic than that at Q = 0.033, near the onset of aperiodic behaviour. 
This increased temporal complexity at smaller Q was corroborated by return maps of 
successive minima of the time series, which show a nearly one-dimensional map for 
Q = 0.033 but a plane-filling attractor cross-section for Q = 0.029. Thus, the system 
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FIGURE 12. Time traces of baroclinic axis signal for various Q values at F = 23. (a) Q = 0.039 
(period-1), (b)  Q = 0.037 (period-2), (c) Q = 0.036 (period-4), ( d )  Q = 0.033 (chaos), ( e )  Q = 0.029 
(chaos). 

does not appear to stay low-dimensional over a wide range of parameter space. Once 
the system becomes chaotic, it becomes complicated somewhat rapidly, presumably 
owing to the presence of other instabilities. 

At F = 35, there exists a mixed-wave NIV, rather than phase-locked, solution 
between wavenumbers 2 and 3. The NIV region is thus displaced upwards in the 
numerical model by about 10% in F compared to experiment, reflecting the larger 
(in F )  crossover point between the k = 2 and k = 3 linear neutral curves. As Q is 
decreased further, the NIV mixes with a PAV-type solution and eventually becomes 
chaotic. The I/P region is a small window in Q where there is either NIV or a 
phase-locked mix of NIV and PAV. 

In the counter-rotating case, the flow at F = 15 first exhibits a steady-wave state 
dominated by k = 1. As lQl is decreased, there is a transition first to PAV, then to 
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FIGURE 13. Time trace of axis interface height for F = 23, Q = -0.033. The contribution of both 

PAV and NIV behaviour to the overall signal is visible. 

a noisy periodic solution, and finally to a fully chaotic state. This transition is very 
similar to that observed in the laboratory for F = 16.7 (cf. figures 3,4 from Ohlsen & 
Hart 1989a). 

The counter-rotating solution at F = 23 exhibits a steady wavenumber-2 solution 
just inside the neutral curve at Q = -0.045. This yields to an NIV solution at 
Q = -0.041. Denoting the dominant frequencies of the k = 1 and k = 2 waves by f l  

and f 2 ,  respectively, the zonal flow is observed to oscillate with a frequency 2fl- f2 ,  a 
characteristic signature of nonlinear interference vacillation. This occurs because the 
primary interaction between the two waves does not alter the zonal flow. Instead, it 
produces another k = 1 wave with a higher radial structure and a frequency f l  - f2 .  
This sideband then interacts with the original k = 1 wave to produce a zonal flow 
correction that oscillates with frequency 2fl - f2 .  In the experiment, Ohlsen & Hart 
(1989b) find that f l  = 0.113, f 2  = 0.197, and the zonal flow vacillation period is about 
5.5 lid periods. The numerical results yield f l  = 0.115, f 2  w 0.206, and a zonal flow 
vacillation period of approximately 6.2 lid periods. 

As IQI is decreased to Q = -0.037, the NIV is seemingly replaced by a PAV 
solution. In fact, the k = 1 and k = 2 waves do not become phase-locked as they do 
for amplitude vacillation when Q > 0. Instead, the PAV frequency is exactly half that 
of the NIV solution, and the dynamics are dominated by the much larger amplitude 
vacillation signal. When IQI is decreased further to Q = -0.033, the two secondary 
instabilities no longer remain phase-locked, and the solution then becomes chaotic. 
Figure 13 displays the axis interface height versus time at this parameter setting. The 
longer-period, large-amplitude signal is associated with a PAV vacillation, while the 
higher-frequency, smaller-scale component corresponds to the NIV behaviour. 

The model results indicate that the NIV is inherently a nonlinear phenomenon. A 
calculation of linear phase speeds of the appropriate waves using the linear model 
presented in $4 does not indicate which solutions will be phase locked and which 
will not. In fact, all the linear phase speed ratios are typically non-integer by about 
5%. By examining the phase speeds in the nonlinear model results, it is apparent 
that in the phase-locked case at F = 23, Q > 0, the k = 1 wave is already locked 
in phase with the steady k = 2 solution when it begins to grow. In contrast, in the 
two NIV regions, the second wave is out of phase with the steady solution even 
when the former is still very small. We thus conclude that the NIV and phase-locked 
solutions originate as secondary instabilities of the initial steady-wave solution. The 
six-wave, E ,  = 0 model of Ohlsen & Hart (1989b) correctly reproduced the NIV for 
negative lid driving, which is not surprising given the similarity of the neutral curves 
in the two cases (see figure 4b). However, their model was unable to produce the 
phase-locking for positive lid driving, implying that either many spatial modes and/or 
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the no-slip boundary condition are required in order to produce the correct dynamics. 
As we argue in $6, the spatial behaviour in these regimes appears to be rather simple 
regardless of the sign of Q, indicating that the sidewall boundary condition is critical 
in dictating the behaviour of the system. 

6. Spatial behaviour and EOF dimension 
For both the f-plane and P-plane geometries, the dynamics are spatially dominated 

by the k = 1 mode for relatively small values of F ,  where the gravest zonal harmonic 
is the most linearly unstable. However, for F large enough such that both zonal 
wavenumbers 1 and 2 are linearly unstable for relatively large IQI, there is observed a 
tendency for strong wave-wave interactions, which subsequently give rise to complex 
dynamics such as wavenumber vacillation, NIV or chaos. One useful tool for 
understanding the salient spatio-temporal dynamics of the system is Karhunen- 
Loeve decomposition (Loeve 1955), by which we can obtain the empirical orthogonal 
functions (EOFs) of the flow. This method is described in detail by Sirovich (1989); 
briefly, it yields, using second-order statistics, the primary spatial structures involved 
in the dynamics. These are ordered according to their time-averaged projection onto 
the overall flow field. An EOF analysis thus reveals a measure of the number of 
independent modes that partake in the observed behaviour. 

Mundt & Hart (1994) have previously applied this analysis to an f-plane, quasi- 
geostrophic model in a channel geometry with great success. They found that the 
dominant EOFs are equivalent in structure to the eigenfunctions of the secondary 
instabilities of the equilibrated, steady, baroclinic wave state. Each transition to a 
new temporal state is accompanied by the concomitant appearance of new spatial 
modes acting as a coherent oscillator. Moreover, these spatial modes act to break 
the symmetries of the channel geometry discussed in $2. In the channel, spatial and 
temporal behaviour are thus intimately intertwined and the transition to chaos is 
not well described by a low-order system such as a single wave model. We wish to 
determine whether the cylinder model, lacking these symmetries, behaves in a similar 
fashion. In this section, we apply EOF decomposition to both the f -  and P-plane 
numerical results in order to both extract the inherent spatial complexity of the flow 
in different regimes, and also to address the role that symmetry breaking plays in the 
observed dynamics. 

6.1. f-plane 
To examine the spatial component of the transition to chaos on the f-plane, EOF 
decomposition was performed on the barotropic and baroclinic streamfunctions at 
F = 13.7 for Q = 0.05 (steady), Q = 0.04 (PAV), Q = 0.03 (PAV), Q = 0.02 (PAV), 
Q = 0.015 (period-2 PAV), Q = 0.011 (PAV), and Q = 0.01 (chaos). All of the 
numerical solutions presented in this study possess a fast time scale owing to the 
presence of travelling waves; the energy of the system, however, vacillates on a 
much longer time scale which is an order of magnitude larger than the reciprocal 
of the gravest wave phase frequency. Owing to computer memory limitations, this 
property of the solutions negates the possibility of obtaining extremely accurate 
EOF decompositions in chaotic regimes, since to ensure valid statistics it is generally 
necessary to sample over many slow-time vacillations while still resolving the fast time 
scale. However, a relatively small number of snapshots is often adequate to resolve 
the dominant EOFs, which comprise the large-scale structure of the flow. 

At Q = 0.05, the steady wave fields are strongly dominated by mode (1,l) with 
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FIGURE 14. Odd EOFs of baroclinic wavy field for Q = 0.04 at F = 13.7 (periodic amplitude 
vacillation). The even EOFs, not shown, are nearly identical to their odd counterparts but are 
phase-shifted to maintain the orthogonality condition. The solid and dashed lines indicate positive 
and negative height anomalies, respectively. 

a small contribution by (2,l) (in practice, the EOFs are generally not pure waves, 
but are nearly so for the solutions presented here). In the PAV regime at Q = 0.04, 
the barotropic and baroclinic wavy fields are composed, in order of decreasing 
contribution, of modes (l,l),  (2,1), (1,2), and (3,l). The odd baroclinic wavy EOFs 
are shown in figure 14. The even EOFs, which are not shown, are nearly identical to 
their odd counterparts but are phase shifted to maintain orthogonality. The notation 
‘even’ and ‘odd’ simply refers to the index of the EOFs when they are sorted from 
largest variance to smallest (i.e. the EOF with the largest variance is denoted as 
EOF #1, that with the second largest variance EOF #2, etc.). For all the fields to 
be presented, the solid and dashed lines respectively indicate positive and negative 
interface deviations. The percent variance captured by each mode, on average, is 
shown in parentheses. Overall, the first two baroclinic wavy EOFs capture 97% of 
the variance of their respective field. The effect of the rigid sidewall, which tends to 
retard the flow near r = 1, can be clearly seen. 

For the slightly different PAV vacillation at Q = 0.03, the relatively insignificant 
(1,2) and (3,l) modes switch their order, but the dominant wave structures are 
unchanged. The first two baroclinic wavy modes now capture 95% of the variance, 
slightly less than at Q = 0.04. As Q is further decreased, the EOFs remain nearly the 
same but the variance possessed by the first two modes continues to decrease, until 
in the chaotic regime at Q = 0.01, the energy captured by the first two EOFs is about 

EOF decomposition was also performed at F = 15 for Q = 0.05 (PAV), Q = 0.03 
(PAV), Q = 0.025 (PAV), Q = 0.0225 (noisy period-2), and Q = 0.0175 (chaos). The 
spatial behaviour of all the PAV solutions is very similar to the amplitude vacillation 
observed at F = 13.7 and shows little variation with Q. Figure 15 shows the first 
four odd EOFs at Q = 0.025, just before the transition to the noisy period-2 regime. 
They are nearly identical to those shown in figure 14. Although the transition from 

88%. 
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FIGURE 15. Odd EOFs of baroclinic wavy field for Q = 0.025 at F = 15 
(periodic amplitude vacillation). 
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FIGURE 16. Odd EOFs of baroclinic wavy field for Q = 0.015 at F = 15 
(periodic amplitude vacillation). 

PAV to the noisy period-2 behaviour is accompanied by a significant increase in the 
variation of kinetic energy in the flow, the EOF spectra of the two solutions show no 
significant differences. The bifurcation sequence thus appears to be purely temporal. 

6.2. P-plane 
For the co-rotating case at F = 15, EOFs were computed at Q = 0.015 (PAV) and 
Q = 0.012 (chaos). For Q = 0.015, the first four odd baroclinic wavy EOFs are 
shown in figure 16. The (1,l) mode is dominant and the first pair of EOFs captures 
95% of the variance. The dynamics are thus heavily influenced by the gravest zonal 
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FIGURE 17. Baroclinic wavy field for Q = 0.045 (steady k = 2 solution) and Q = 0.041 
(locked k = 1,2 state) at F = 23. 
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FIGURE 18. EOFs of baroclinic wavy field for Q = 0.041 at F = 23. 

harmonic. In the chaotic regime at Q = 0.012, the EOFs are nearly identical to those 
at Q = 0.015. Similar to the f-plane findings, the transition to chaotic flow seems to 
be temporal and is not associated with a change in the spatial representation of the 
flow. 

For the co-rotating case at F = 23, the baroclinic wavy field is shown in figure 17 for 
the steady k = 2 solution at Q = 0.045 and for the locked k = 1,2 state at Q = 0.041. 
Figure 18 shows the baroclinic wavy field at Q = 0.041 when decomposed into EOFs; 
only the odd empirical functions are shown. The solution naturally separates into 
fields composed of a particular zonal wavenumber. The (1,l) mode dominates and 
captures about 70% of the variance, while the (2,l) wave captures nearly 30%. The 
(3,l) contribution is quite small and nets less than 0.5% of the total variance. Thus, 
the solution is essentially a linear combination of the (1,l) and (2,l) waves. Although 
the solution is actually a ‘frozen’ pattern travelling around the tank, the requirement 
of orthogonality necessitates two EOF pairs for adequate representation. 

EOF decomposition was used to reveal the dominant spatial modes in the system 
in the period-1, period-2, period-4, and chaotic regimes at F = 23. Figure 19 displays 
the odd baroclinic wavy EOFs at Q = 0.037 in the period-2 regime. The first three 
pairs of EOFs contain nearly all the energy and are identical to the structures seen in 
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FIGURE 19. Odd EOFs of baroclinic wavy field for Q = 0.037 at F = 23 
(period-2 amplitude vacillation). 
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FIGURE 20. Odd EOFs of baroclinic wavy field for Q = 0.065 at F = 35 (NIV). 

the locked state in figure 19. In fact, the EOF analysis indicates that the spatial modes 
do not change as the system period-doubles into chaos. The spatial structure of the 
EOFs is unaltered, and the percent variance captured by each mode is changed only 
slightly, with the lower-variance modes becoming more energetic as Q is decreased. 
The transition to chaos is again purely temporal. 

EOFs were also obtained in the co-rotating case at F = 35, Q = 0.065, where NIV 
occurs between wavenumbers 2 and 3. Figure 20 displays the odd baroclinic wavy 
EOFs in this regime. Interestingly, the k = 1 sideband produced by the interaction 
of the two primary waves is itself larger than the (2,l) mode. Nonetheless, the EOF 
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FIGURE 21. Odd EOFs of baroclinic wavy field for Q = -0.039 at F = 23 (NIV). 

analysis confirms that the dynamics are governed by the two primary waves and the 
sideband resulting from the nonlinear interaction of the two, since the remaining 
EOFs possess a negligible amount of energy. Moreover, an examination of the 
associated time series of the k = 1 EOF indicates that it has a phase speed of f 3  - f2, 
where f2 and f 3  are the phase speeds of the k = 2 and k = 3 waves, respectively. 
In agreement with prediction (Ohlsen & Hart 1989b), the NIV solution possesses a 
vacillation frequency 2f3 - 3f2. 

In the counter-rotating case at F = 15, the behaviour is dominated by the (1,l) 
mode, similar to the f-plane and co-rotating P-plane results. This simple spatial 
dependence persists in the noisy-periodic and chaotic regimes, indicating yet again 
that the transition to chaos is largely temporal in nature. However, the dominance 
of the (1,l) mode decreases somewhat as the transition to chaos is made, and the 
lower-energy modes become more energetic, indicating that the nonlinearities are 
enhanced as IQI is decreased. 

The spatial dependence of the NIV in the counter-rotating case appears quite 
different from the solution at F = 35, Q > 0. The odd EOFs of the baroclinic wavy 
field are displayed in figure 22 at F = 23 and Q = -0.039. In this situation, the 
(2,l) and (1,l) modes, which are the primary waves, comprise the first two pairs of 
EOFs. The sidebands (3,l) and (1,2), which arise from the nonlinear interactions 
of the two primary waves, form the next two pairs of empirical functions. The 
higher-order EOFs, which contribute a negligible portion of the overall energy, are 
composed of higher-wavenumber terms. The structure of the dominant EOFs is quite 
different from those observed in the co-rotating case (figure 20). The shearing due 
to the sidewall boundary layer is almost unnoticeable for Q < 0, and the EOFs 
resemble the linear eigenfunctions of the EL, = 0 problem. This may explain the 
success of low-order, EL, = 0 models in reproducing NIV for counter-rotating lid 
driving (Ohlsen & Hart 1989b). Interestingly, an EOF analysis in the PAV regime at 
Q = -0.037 reveals that the spatial mode shapes are unaltered. However, the first two 
pairs of EOFs are interchanged, with the k = 1 contribution becoming the dominant 
structure of the flow. The dominant EOFs in the chaotic regime at Q = -0.033 are 
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FIGURE 22. Snapshots of interface height shapes during the growth of an amplitude vacillation 
(a + c )  with flat topography for F = 18, Q w 0.02. The fluid properties and cylinder dimensions 
are similar to those cited in table 1. 

nearly identical to those at Q = -0.037. Therefore, as with Q > 0, the transition to 
chaos is temporal. The NIV and PAV solutions involve the same spatial modes, but 
in differing proportions. Chaos likely ensues from a competition between these two 
possible states. 

6.3. Spatial structures in experiments 
One obvious characteristic of the computational simulations is the comma shape of 
the dominant lowest-order EOF (e.g. figures 16, 20 top left). It is interesting that 
computational simulations that omit lateral friction, and so have no lateral shear in 
the basic state near r = 1, do not predict ‘comma clouds’ such as these. For example, 
in the cylinder model of Yoshida & Hart (1986), which has a basic state of equal but 
opposite solid rotation all the way to the wall in the two layers, the interface height 
fields are nearly symmetric in azimuth about the ridges. 

The laboratory experiments cited above were instrumented with two or three 
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interface height gauges. From these probes it is difficult to detect features such as 
those shown in figures 14-21, for example. However, polarimetry (Hart & Kittelman 
1986) yields spatial structures very similar to the dominant EOFs. In this visualization 
method, the lower-layer fluid (usually water-alcohol) is replaced by an optically active 
liquid (Limonene). When the cylinder is illuminated with polarized light from below, 
the beam is rotated in proportion to the layer depth. If a camera looks down from 
above through a crossed polarizer, images of interface depth may be obtained directly. 
Figure 22 shows a typical example of the growth of a disturbance during a vacillation 
cycle for a co-rotating flow. The comma shape is obvious. The geometry for this 
lab experiment is slightly different from the computations in that the bottom and 
top surfaces are flat, but since the computations for both the f -  and P-planes show 
comma shapes to be ubiquitous, we regard this as another confirmation that the 
essential physics of baroclinic chaos in a cylinder is being captured by the model. 

7. Conclusions 
We have formulated a high-resolution model of two-layer, quasi-geostrophic flow 

in a cylinder with rigid sidewalls. A calculation of the linear stability curves using the 
no-slip condition yields an improvement over previous theoretical implementations 
that ignore lateral friction. In the nonlinear regime, f-plane calculations generally 
show good agreement with experimental results, although the latter become chaotic 
at larger values of Q than the former. As anticipated, the computations exhibit 
behaviour that is somewhat the ‘average’ of that observed in the laboratory for Q < 0 
and Q > 0. The lack of complete correspondence of our f-plane numerical results 
with experimental findings, and the behaviour of the laboratory flow itself, indicates 
that higher-order effects are important even when IQI is relatively large and hence 
Ro is small. The inclusion of ageostrophic terms is a logical extension of this study, 
and accounting for such effects will hopefully mitigate the remaining discrepancies 
between computational simulations and laboratory experiment. On the P-plane, 
results for both co-rotating and counter-rotating lid driving show excellent agreement 
with experiment. It is unclear why the P-plane laboratory behaviour is more faithful 
to the quasi-geostrophic numerical simulations than its f-plane counterpart. The 
computations reveal that when P # 0, the k = 1 and k = 2 waves have approximately 
equal amplitudes. On the f-plane, however, the k = 1 wave is dominant. Perhaps on 
the P-plane the interaction between the first two zonal harmonics (which is integral 
in generating the observed chaotic behaviour) obviates the importance of the shear 
layer at the sidewall, where the flow is most ageostrophic. 

The present study indicates that the behaviour in a cylindrical geometry depends 
crucially on the sidewall boundary conditions, a phenomenon which has already been 
observed in the channel (Mundt et al. 1995). For example, previous calculations 
(Ohlsen & Hart 1989b) using a moderately resolved fl-plane model with EL, = 0 yield 
NIV for both signs of lid driving instead of phase-locking for Q > 0, as found in this 
study. The computational simulations reveal that, in the NIV regime on the P-plane 
( Q  = -0.039), the region of large vorticity and vorticity gradient for the waves is 
confined to the outer 3% of the domain. The confinement of the effect of the no-slip 
sidewall explains the success of the afore-mentioned model when Q < 0. However, 
for both the f-plane and the co-rotating P-plane cases, the wavy fields have large 
values of vorticity in the outer 15% of the domain. Thus, the presence of the viscous 
sidewall boundary layer generally appears to have a global effect on the dynamics, 
and its inclusion is essential for accurately simulating the laboratory flows. 
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FIGURE 23. Number of EOFs required to meet 99% variance threshold versus supercriticality for 
rigid cylinder model, rigid channel model, and free-slip channel model. Steady, periodic, and chaotic 
behaviour are respectively indicated by asterisks, squares, and triangles. 

For both f-plane and P-plane scenarios, the transition to chaos is largely temporal. 
In all of the cases studied, the chaotic behaviour is observed to have the same 
dominant spatial structures as the less complex (e.g. periodic) regimes in a nearby 
region of parameter space. This is in sharp contrast to the behaviour observed in 
computer simulations of zonally periodic channel flow, where chaos is achieved by the 
emergence of many interacting instabilities, each with its own unique spatial signature 
and temporal frequency. The shift-reflect and flip-reverse symmetries present in the 
channel (and which manifest themselves in these instabilities) owe their existence to 
the particular geometry and choice of physical parameters; the cylinder geometry 
lacks the former symmetry, and the experimental setup (i.e. x # 1, i&,t # 0, p # 0) 
eliminates the latter. 

In the rigid cylinder, the number of EOFs needed to represent the spatio-temporal 
dynamics in the chaotic regime is generally far less than the number required in both 
rigid and free-slip channels. Figure 23 shows the number of EOFs required to meet a 
99% variance threshold versus the supercriticality ( F  - Fc) /Fc  (where F, is the critical 
value of F required for linear instability) for three cases: rigid cylinder, rigid channel, 
and free-slip channel. The computations were performed on the f-plane at Q = 0.05. 
The Ekman numbers used are the same as in $5.2. For these parameter settings, the 
rigid channel is subcritically chaotic, and approximately 100 modes are needed to 
capture the dynamics near F = F,. As the supercriticality is increased, the required 
number of EOFs increases to about 200. In the free-slip channel, the onset of chaos 
does not occur until the supercriticality is about 10, but again around 100 EOFs are 
needed to represent the dynamics faithfully. In contrast, the rigid cylinder begins 
to exhibit chaotic behaviour when the supercriticality is about 1.5 (consistent with 
laboratory experiments), and only about 35 EOFs are necessary to meet the variance 
threshold. The findings of this study therefore suggest, somewhat counter-intuitively, 
that the elimination of symmetries actually simplifies the spatial dynamics, possibly 
by reducing the number of possible 'sub-states' in which the solution can dwell, and 
hence eliminating potential competition between these sub-states. 

The idea, which remains to be investigated in more detail, is that the zonal channel 
has two active symmetries. As shown in Mundt & Hart (1994), this leads to four 
independent symmetry-breaking secondary instabilities of the steady equilibrated 
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baroclinic wave system. The secondary instabilities are weakly coupled, have vastly 
different spatial structures (again obeying or lacking certain symmetries), and have 
incommensurate frequencies. This situation appears to be central to the quasi- 
periodic flow observed on the road to chaos in the symmetric geometry, where 
at finite amplitude mixed secondary instability states will be characterized by two 
or more unrelated frequencies. In addition, the number of secondary instabilities 
grows rapidly with supercriticality, accounting, probably, for the rapid dimension 
increase in the free-slip and rigid channels. In the cylinder, as we have shown, the 
fundamental wave pattern is asymmetric (essentially just the comma mode), and 
this pattern is dominant throughout the transition region. The geometric asymmetry 
seems to collapse the multiple instabilities of the channel into one mode, and hence 
the resulting vacillating and chaotic states are of lower dimension. Although the 
cylinder with top-only forcing may appear more complex in its geometry and basic 
states than the nicely symmetric zonal channel, the dynamics contained within it is 
simpler! As many objects (spherical shell atmospheres, ocean basins, etc.) studied in 
geophysical fluid dynamics are more akin to the cylinder, this observation, if verified 
by studying more examples as well as the basic theory for bifurcations in symmetric 
and asymmetric systems, may be significant. 

This research was supported by the National Science Foundation under grant 
ATM-9025087. Computational resources were provided in part by NASA grant 
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Appendix 
The coefficients for the basic-state solution shown in (3.1),(3.2) are as follows: 

and 

If x = 1, these reduce to 

Y1,2 = f l ,  

and 
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